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Linearized two-dimensional potential flow theory is applied to an airfoil with an 
upper surface spoiler. The spoiler wake is modelled as a cavity of empirically 
given constant pressure, and a sequence of conformal transformations maps the 
linearized physical plane, with a slit on the real axis representing the airfoil plus 
cavity, onto the upper half of the plane exterior to the unit circle. The complex 
acceleration potential is used, and its real part is specified on the real axis, repre- 
senting the cavity boundary, while its imaginary part is specified on the unit 
semicircle, representing the wetted surface of the airfoil and spoiler. Solutions are 
found for both the steady-state lift and the transient lift after spoiler actuation 
for airfoils of arbitrary camber, thickness and incidence, with and without a 
simple flap, and with spoilers of arbitrary position, height and angle. The 
empirical cavity pressure is arbitrary for the steady-state solution, but is 
assumed to have the free-stream value for the transient solutions. Comparisons 
are made with the results of wind-tunnel experiments, and, for the steady-state 
solutions, with predictions of an earlier theory. The agreement of the present 
theoretical predictions with the experimental results is generally good, and is 
in most cases somewhat better than that of the earlier theory. 

1. Introduction 
Upper surface spoilers on lifting airfoils are in general use as devices to reduce 

lift and increase drag, and although there is an increased interest in their addi- 
tional use for roll control of STOL aircraft, there has been relatively little general 
information, either experimental or theoretical, available on their performance 
characteristics, particularly the transient characteristics. 

The problem of developing a satisfactory theory is made more difficult by the 
present general inability to predict wake properties of separated flows. As a result, 
any theoretical model for an airfoil with spoiler will include some empiricism. 
However, the separation points are fixed at  the spoiler tip and airfoil trailing 
edge, and the separating shear layers are thin and well-defined close to the airfoil, 
so that an irrotational free-streamline model of the flow outside the wake should 
be capable of producing accurate results, except for any boundary-layer-separa- 
tion bubble caused by the positive pressure gradient in front of the spoiler. Some 
empirical data on the flow conditions at the edges of the wake is needed to 
complete such an irrotational model. 
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In  an earlier linearized two-dimensional theory, Woods (1953) assumed that 
the pressure change caused by the spoiler is constant between the spoiler and the 
trailing edge of the airfoil. This constant, and an additional symmetrical 
boundary pressure distribution representing the effect of the infinite wake down- 
stream of the airfoil’s trailing edge, are supposed to be given empirically. He 
developed a free-streamline model using conformal transformations involving 
the complex potential and velocity, and solved for the loading on the airfoil as a 
function of geometric parameters of the spoiler. Subsequently, Barnes (1965) 
devised an empirical modification to Woods’s theory for normal spoilers, 
accounting for the effect of the airfoil boundary layer on the effective height of 
a spoiler, and providing an empirical formula for the incremental spoiler base 
pressure. 

Other models of partially separated flows over foil sections have been developed 
for cavitating hydrofoils, and for these also two-dimensional irrotational flow 
theory is suitable. The necessary empiricism is usually introduced by specifying 
both a constant cavity pressure and the nature of the downstream closure of the 
finite cavity. Parkin (1959) has applied the method of complex acceleration 
potential introduced by Biot (1942) to a linearized problem of this class, that of 
the loading on fully cavitating hydrofoils in non-steady motion, and Fabula 
(1962) has applied the same method to the case of a hydrofoil in steady motion 
with the cavity starting at an arbitrary point on the upper surface. Song (1965) 
has applied the method to a supercavitating flat-plate hydrofoil with an 
oscillating flap. 

The above theoretical models are all linearized, and consequently might be 
expected to predict forces and moments successfully, but not pressure distribu- 
tions. For these, a thick-airfoil theory is needed, and Jandali & Parkinson (1970) 
have developed one for Joukowsky airfoils with normal spoilers, using a sequence 
of conformal transformations and a modification of the wake source model of 
Parkinson & Jandali (1970). This theory has been extended to apply to solid air- 
foils of arbitrary profile with normal spoilers by Jandali (1970), using an adapta- 
tion of the method of Theodorsen (1931), and to airfoils with inclined spoilers 
and slotted flaps by Brown (1971), using a combination of the surface source 
distribution method of Hess & Smith (1966) and the above wake source model. 

The present work is intended to provide an improved steady two-dimensional 
thin-airfoil theory for the prediction of forces and moments on solid airfoils with 
spoilers, and to extend the theory to predict the transient loading following 
spoiler actuation. The constant-cavity-pressure assumption used in the hydrofoil 
models is more realistic for the base pressure of the airfoil with spoiler than is 
Woods’s assumption of a constant incremental pressure, since experiments 
demonstrate that the actual pressure, and not its increment caused by the 
spoiler, is constant behind the spoiler for a given configuration (see, for example, 
Jandali & Parkinson 1970, figures 5-10). Accordingly, the method of Parkin 
(1959), with a finite constant-pressure cavity analysed in terms of the complex 
acceleration potential, is adapted to the present problem. 

Apart from the different method of treating the wake, and a different mathe- 
matical model, the present steady theory differs from that of Woods (1953) in its 
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inclusion of the effect of airfoil thickness, which Woods neglects. In  conventional 
thin-airfoil theory without flow separation, there is no effect of thickness on the 
lift and moment. However, the presence of the spoiler removes the upper surface 
of the basic airfoil behind the spoiler from the effective flow field, so the effective 
thickness envelope of the airfoil with spoiler becomes asymmetric, and now has 
an effect on the lift and moment, in addition to the direct effect of the spoiler and 
of the airfoil incidence and camber. 

In  the following section, the theory is developed for a thin solid airfoil of small 
but arbitrary camber, thickness and incidence with or without a simple flap, and 
with a small spoiler of arbitrary height, location and inclination. For the steady 
theory, the spoiler base pressure is a constant, determined from experiment. 
For the transient theory, the base pressure is taken to have the free-stream value. 

2* theory 2.1. Acceleration potential 

Biot (1942) showed that a two-dimensional incompressible irrotational flow past 
a thin airfoil could be conveniently analysed in terms of an acceleration potential, 
which exists because the fluid acceleration vector is the gradient of a scalar func- 
tion, the negative pressure-density ratio. Parkin (1959) presented a compre- 
hensive treatment of the acceleration potential and its application to thin cavi- 
tating hydrofoils. For steady flow, the cavity surface velocity magnitude is 
constant and is used by Parkin as the fundamental reference velocity. In  the 
usual linearized airfoil problem without cavitation, the undisturbed velocity at 
infinity U is the only characteristic velocity and it is convenient to retain it here 
as the reference velocity. Thus at any point ( x ,  y) in the non-steady flow around 
the airfoil the velocity vector q can be expressed in terms of dimensionless 
components (u, v) as q(x, y ,  t )  = U((1 +u), q. 

The cavity pressure pc is constant and can be related to the reference pressure 
at  infinity p m  by the cavitation number K .  The pressure coefficient C, has 
its customary definition and the base pressure coefficient c p b  is related to K by 

The acceleration potential 4 is easily shown to be a harmonic function, so 
a conjugate function $ can be introduced, and a complex acceleration potential 
defined by the analytic function 

where x = x + iy. 
Using the Euler and Cauchy-Riemann equations the x and y components of 

the perturbation velocity can be related to q5 and $ by the linear first-order 

w, t )  = 4@, Y ,  t )  + W x ,  Y ,  t ) ,  (2.1) 

differential equations au au a+ -+u-= u- 
at ax ax 

and 

where 4 and $, but not x, y or t ,  have been defined in dimensionless form. 
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For the special case of steady flow, these equations reduce to 

u = #+&K, v = -$, (2.2) 

where the constants of integration have been determined by the conditions a t  
infinity, and by choosing the constant value of # on the cavity boundary to be 
zero. The usual linearized pressure coefficient can then be determined as 

C, = -2#-K.  (2.3) 

Using the Blasius equation and integrating along a contour enclosing the body 
cavity system, the lift coefficient can be expressed in terms of the first-order 
dimensionless perturbation velocities. Introduction of (2.1) and (2 .2 )  gives the 
lift coefficient as 

where c is the airfoil chord length. 

C,-iC, = :fF(z)dz, (2.4) 

2.2. Transformations 

An airfoil of chord c,  spoiler height hand flap chord c,, is immersed in a two-dimen- 
sional, incompressible, irrotational flow uniform at infinity. The airfoil leading 
edge is positioned at  the origin of the z plane as shown in figure I, and a fully 
developed closed cavity of length Z extends from separation points t and c,  the 
spoiler tip and the airfoil trailing edge respectively. The upstream part sOc of 
the body contour Cis mapped conformally from the upper half of the unit circle y, 
in the < plane, by the analytic function 

la-'[[8(b + 1) (<+ <-') - i( I - b)}' 
2 = f ( O  = l+a- I-( b+ I)  (<+<--l)-+(l -b)I2' 

u = [(Z-C)/C]*, b = ~[t / (Z- t ) ]* .  (2 .5 )  

The linearized physical, intermediate and final transform planes are shown in 
figure 2. In the <plane, the cavity extends along the real axis < > 1 and 6 < - 1, 
and z = - co, where the boundary conditions at infinity are to be applied, maps 
to the point 

I 

2 1-b  I - b  
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FIGURE 2. Complex transform planes. 

The angular locations of points 0, s and n in the 5 plane can be determined from 
(2.4) as 

Oo = cos-l[( 1 - b) / (  1 + b ) ] ,  

and 

where the inverse cosines are taken between zero and 7 ~ .  The complex acceleration 
potentials in the transform planes are invariant a t  corresponding points and the 
accelerations differ only by the derivative of the mapping functions, and thus 

dF dFdx 
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3. I .  Boundary conditions 3. Steady theory 

The steady-state boundary conditions are as follows. 
(i) 4 = R e p  = 0 on the cavity, 1 > x 2 t ,  y = 0+ and 12 x > c, y = 0-. 
(ii) Kutta conditions q5 continuous at the spoiler tip x = t ,  y = 0+ and at the 

(iii) Airfoil surface normal boundary condition 
airfoil trailing edge x = c,  y = 0-. 

v = - $ . = d  ?lldx, 

where the airfoil surface is denoted by ( x ,  y ( x ) ) .  
(iv) The boundary condition F = - &K at infinity. 
(v) The body and cavity system must be equivalent to a single closed body. 

The condition of zero drag on this equivalent body is used in (2.4), and this leads 
to the condition 

Im F ( z ) d z  = 0, (3.1) $ 
where the contour of integration again encloses the body and cavity system. 

3.2. Flow model 

A common thin-airfoil-theory approach is followed with the determination of a 
set of complex functions in the [plane that satisfy the above boundary conditions. 
Incidence, camber, thickness, spoiler and flap solutions can be determined inde- 
pendently and then superposed. 

Incidence case. Consider the complex functions 

where B,, Co and Do are real constants. The first term provides the usual thin- 
airfoil singularity at the point corresponding to the airfoil leading edge. The 
conjugate term is necessary to satisfy the boundary condition and maintain the 
unit circle and real axis as a streamline. The cavity termination must be a singular 
point to account for the branching of the free streamlines. In  the 5 plane this 
point is located at  infinity on the real axis. A simple pole at  the origin, the inverse 
point for the cavity closure in the unit circle, is added t o  the second term to 
satisfy the streamline boundary conditions. The third term, a complex constant, 
also does not violate these conditions and is an acceptable function. Boundary 
conditions (iii)-(v) are still to be satisfied. 

Camber case. Consider the function 

where the M, are real constants. The free-streamline and Kutta conditions are 
clearly satisfied. Boundary condition (iii) can be used in conjunction with the 
known Fourier series for dyldx for this case, (dyldx),, to give the unknown Mn as 
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With a combination of incidence and camber 

m 
dy/dx = - Im F = C, - Do + C N, cos no = - a + (dy/dx),. 

It follows that Do = a-Q&,+C,, 

where 

The constants B, and C, are still to be determined. 
Thickness case. For the thickness solution consider the complex function 
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where the N, are real constants. This function satisfies the free-streamline and 
Kutta conditions and the unknown N, can be solved for, as in the camber solution, 
through application of boundary condition (iii). For the thickness case 
dyldx = (cZy/clx)t as a function of 6 is not continuous as in the camber solution, 
but has a discontinuity at the point corresponding to the airfoil leading edge. 
Determination of the unknown Nn does however reduce to the solution of a 
Fourier series. The coefficients Nn are given by 

and 

It was found necessary to use a complex thickness function with a singularity at  
the point corresponding to the airfoil leading edge. In  attempting to use a 
function similar to that of the camber case, it was found that the Fourier coeffi- 
cients would not converge. 

Spoiler case. In  the spoiler case, there is a step change in v passing along the 
body contour across the point corresponding to the spoiler base. It is also required 
that v be constant over the appropriate portions of the unit circle. Parkin (1959) 
demonstrated that a combination of logarithmic terms will satisfy such con- 
straints. It is convenient to combine such a function with one of the same type 
as the first term from the incidence case to give the spoiler function 

Applying boundary condition (iii) to (3.6) gives 

0 on the foil n > 8 > el, 
sins on the spoiler 8, > 19 > 0. 

v = {  

Although its use is inconsistent with the assumptions of linearized theory, 
sin 6 replaces 6 in the above boundary condition so that spoiler angles up to 90" 
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can be considered realistically. Both Woods (1953) and Barnes (1965) have had 
some success with normal spoilers using linearized theories. It was demonstrated 
in the incidence case that the first term of (3.6) satisfies the first two boundary 
conditions. On the cavity where 2 1 and 6 is real, the logarithm term is 
purely imaginary and hence satisfies both the streamline and Kutta conditions. 

Plap case. This case is identical to the spoiler case except that the flap is 
restricted to small angles. The complex flap function is 

The perturbation velocity u on the surface for this case is determined from 
boundary condition (iii) to be 

(0 on the foil 8, > 6' > 0,  

1-7 ontheflap n>0>6',. 
U =  

It has been demonstrated in the spoiler case that the functions (3.7) satisfy the 
first two boundary conditions. 

The constants B, and C, remain unknown, and will be determined by applica- 
tion of boundary condition (iv) to the real and imaginary parts of the complex 
functions developed in this subsection. Boundary condition (v) enables a relation- 
ship between the cavity number K and cavity length 1 to be established. 

3.3. Method of solution 

Boundary condition (iv), the condition a t  infinity, can be expressed as 

where ci, the point a t  infinity, was given by (2.6). The unknown constants B, and 
C, are contained in Fin({i). The real and imaginary parts of this equation give 
two simultaneous equations in C, and B,. The values of these constants are 

Re A,[Im E - (a  - iM,)] - Im A, Re E + $K Im A, 
Re A, Im A, - Im A, Re A, 

B, = 

and C, = (Re E - B, Re A, - +K)/Re A,, 

where 

and 

All the function constants have been determined. Still unknown are K and 1. 
There is not currently a theory that will correctly predict the base pressure for 
separated flows and at  least this parameter will be an empirical input. Since 1 can 
be related to K through boundary condition (v), no further input is required. 
Choosing a contour such that 1x1 Z, { can be expressed as a Laurent expansion. 
The closure condition becomes 

E = -mci) - FtG) - & K i )  - q c i , .  

Re{coefficient of x-'] = 0. 
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Solving this equation gives K in terms of 1 as 

1 Re A,[Im E - (a - *&lo)] - Im A, Re E 
Re A, Im A, - Im A, Re A, K = 2Re{la1(i(l+%) [ 

1 Re (la, ( Re A, Im A, - Im A, Re A, (a, eieo - 1), (a, e-ieo - I), 
eieo e-ieo + Im A, 

Im A, 
I+- , (3.8) 

* Re A, Im A, - Im A, Re A, ( :J)) - %  

1 - b  2ia 1 - b  2ia 3 
1 + b 1 + b -I- [ { l+b +my - '1 a, = -+- where 

and 

An iterative or graphical technique is necessary to solve (3.8) because 6,, 61 and 6, 
are complex functions of 1. 

This completes the problem formulation for the steady theory and it remains 
to determine the pressure and lift coefficients. Using (3.8), and collecting the 
values of the acceleration potentials (which are the real parts of (3.2), (3.3), (3.5), 
(3.6) and (3.7)), the pressure coefficient, as a function of angular position on the 
unit circle in the 6 plane, can be written as 

r(O,-n) 6,sinS sin6 + 4B, sin 6 ' 7 1  cos6,-cos6 

--In( 2sinS sin&/8-8,1) -- 71n(sF& (6-6,( 
7~ sini(6'+61) sin i(6 + 0,) 

x N, sin n6 
a3 

-- 1 
m 

1 
+ 'x MnsinnB+ cos 8, - cos Kl 

where points on the airfoil can be related through the transformation (2.5) to 
points on the unit circle by 

la-,[+(b + 1)  cos 6- &( 1 - b)] ,  
1 + a-,[+(b + 1)  cos 6 - &( 1 - b)],' 

X =  
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The lift coefficient can be determined by the use of (2.4) and the Laurent 
expansion determined from application of boundary condition (v). The lift and 
drag coefficients are given by 

and 

C, = 4" Im (coefficient of - z 
c l] 

C 

(3.9) 

The real part of the coefficient of x-l was shown to be zero in the consideration 
of the closure condition, so the overall drag coefficient is zero as expected in 
potential flow theory. The drag on the airfoil is balanced by the force on the 
singularity at  the cavity termination and this point only need be considered in 
(3.9) to determine the airfoil drag. The drag predicted is unrealistically high. This 
result is probably due to the theory being unable to model the separation bubble 
evident in real flow in front of the spoiler. The drag theory therefore will not be 
pursued further. The lift coefficient becomes 

1 

The Blasius equation for the pitching moment could be applied to determine 
the pitching-moment coefficient of the airfoil. This has not yet been attempted. 

4. Non-steady theory 
The non-steady problem considered in this paper is the case of spoiler actuation 

on a fixed airfoil in initially steady flow. Non-steady airfoil motions with fixed 
spoiler angles have not been considered. Such cases are a much simpler applica- 
tion of this theory and have many features in common with existing results given 
by Parkin (1959). The spoiler actuation theory is developed for the case of zero 
cavitation number. In  the present analysis, it is not possible to allow the cavita- 
tion number to be a function of time since this would make the cavity length, and 
hence the transformations, a function of time. Modification of the current theory 
would be necessary to effect a solution in such a situation. The only relatively 
simple approaches would appear to be either to assume that as soon as the spoiler 
starts to move the cavity number takes its final steady-state value, or to assume 
that the cavity number is a t  all times zero. The first assumption has limitations 
and the second, although not physically realized, does have merit. The average 
pressure on the rear part of the upper surface of an airfoil in most configurations 
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is very close to zero. Hence during the initial part of the spoiler actuation, the 
cavitation number is close to zero. Also the zero-cavitation-number solution is 
simpler mathematically and its complete linearity permits easy comparisons 
with solutions of existing non-steady thin-airfoil problems such as change of 
angle of attack. At zero cavitation number the cavity pressure is equal to the 
undisturbed free-stream static pressure and the cavity extends to infinity. The 
foil is positioned as shown in figure 1 for the steady flow solution, with I = CQ. 

Linear airfoil techniques are once again employed, and solutions are to be 
obtained for the unit step spoiler actuation and the finite time spoiler actuation. 
In the problem of a unit step change of angle of attack in existing thin-airfoil 
theory (see Bisplinghoff, Ashley & Halfman 1955), an intermediate solution to 
the harmonically plunging airfoil problem is required. An analogous approach is 
used in this paper, although the spoiler moves relative to a fixed airfoil. The 
boundary condition on the spoiler is a step in the v component of velocity given 
by w = sin&. Such a step change in velocity can be achieved by solving for the 
case of a sinusoidal velocity of circular frequency w ,  v = vo ejwt, over this region 
and then integrating over all frequencies. This velocity is considered to be a 
disturbance to the existing steady-state solution for some spoiler angle. This 
problem will henceforth be referred to as ‘blowing ’ theory. 

4.1. Blowing theory 

Only the flat plate of zero incidence need be considered. This problem is equiva- 
lent to the spoiler case from the steady solution and the remaining steady-state 
solutions of incidence, camber, thickness and flap for K = 0 are fully additive to 
this non-steady solution. 

4.2. Boundary conditions and transformations 

Boundary conditions (i), (ii) and (iv) for this non-steady blowing problem remain 
the same as for the steady-state solution. The remaining boundary conditions are 

0 on the foil 

v,ejmt 

0 < x < s, y = O+ and 0 < x < c,  y = 0-, 
(iii) v = { 

on the spoiler s < x < t ,  y = O + ;  

0 on the foil 0 < x < s, y = O+ and 0 < x < c, y = 0-, 
(v) Im- = 

-j,uv,eiut on the spoiler 5 < x < t ,  y = Of. 

The frequency parameter ,u is given by ,u = wlU.  The physical plane for this 
problem is the z plane of figure 2 with I = co, and the basic transform plane 
remains essentially the same as the g plane. The analytic transformation 
function is 

a’ = [l/c]*, b’ = art$. J 
Points on the airfoil contour C in the x plane are related to the corresponding 
points on the unit circle contour y by 

b’ + l [cos 0 - cos 0,]2. 
C - = (T) 

45 
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4.3. Method of solution 

Integration of boundary condition (v) gives 

I C, ejot on the foil, 

1 - bf2 ’ = i -j,uvo e j w t  [ r%)’ x 4 cos 20 - ( T) cos 01 + C, ejwt on the spoiler, 

(4.3) 

where the ‘constants’ of integration are assumed to be harmonic functions oft. 
The solution to this problem closely follows the techniques of the steady-state 
problem. Complex functions must be determined to satisfy the boundary condi- 
tions. The constant terms of (4.3) can be satisfied by functions presented in the 
steady-state spoiler case, and the remaining term is of the camber type that can 
be represented by a Fourier series complex function. The non-steady complex 
function can then be written in terms of the unknowns C, and C, as 

where (4.5) 

In (4.5) the constant Fourier coefficient has been absorbed in C,. The complex 
functions are of the steady-state type and dearly satisfy boundary conditions 
(i) and (ii). Boundary condition (v) was used to determine the non-steady com- 
plex functions and is inherently satisfied. Consideration of the mapping function 
(4.1) and of (4.4) shows that F, approaches zero as IzI approaches infinity. 
Boundary condition (iv) is therefore satisfied. Boundary condition (iii) can now 
be used to determine the unknown constants C, and C,. To first order in the 
perturbations, the v component of Euler’s equations of motion may be written as 

where the non-steady complex function has been expressed as 

and 

Since V,, the velocity amplitude of a given point in the flow field about the 
x axis, must vanish at infinity, the integral of (4.6) becomes 
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where x refers to any point on the airfoil or spoiler and is a streamwise variable 
of integration. At points on the airfoil V, = 0 and at  points on the spoiler V, = v,. 
Consideration of two such points results in two simultaneous equations in the 
two unknowns C, and C,. The solution of these equations is 

and c, = 

n - jp e-jg' T3 d e  
9 

0 

where 
Jn 

m 

2i 

2i 
1 +b' 
- 5'4 

and 
2i i [L] l + b '  5's 

T4 = Re (4.7) 

The expressions for C, and C, do not have simple analytical solutions. The 
integrals can be expanded in a series for large and small values of p, however 
a numerical technique was preferred. The integrands in equations (4.7) are very 
slowly varying functions of f;' (for greater than a few airfoil chords) and 

45-2 
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approach zero as r approaches infinity. The integrands are harmonic functions 
requiring that ,uc be truncated a t  the end of a complete cycle. Hence ,uF must be 
an exact even multiple of rr. Using this technique, it is found that a value of of 
about 10 chords gives a high degree of accuracy. The value of 5‘ actually fluctuates 
around 10 chords as ,ur is kept as an exact even multiple of rr. The integrals 
involving T,, T3 and T4 have an infinite integrand at  the lower limit of integration 
and care must be taken in numerically determining the Cauchy principal value. 
Using (2.4) and (4.2), integration of the pressure coefficient gives the lift 
coefficient as 

where CL, is the amplitude of the non-steady lift coefficient such that 

C, = C,, ejot, q5 = 4, ejwt. 

The solution of this integral is 

CLo = -C,D,+ CzD, -j,~voD,, 

where D, = n{[$(b’ + 1)12 [28, cos 28, - sin 28,] + (1 - b’,) [sin O1 - 8, cos So]), 

D, = rr{[i(b’ + 1)12 [2(8, - n) cos 28, - sin 2 4 1  

+ (1 - 6 ’ 2 )  [sin 8, - (6, - n) cos O,]) 
and 

If the quasi-steady lift coefficient C,, is defined to be the value of the non-steady 
lift coefficient for ,u approaching zero, then the ratio of the non-steady lift 
coefficient to the quasi-steady lift coefficient is 

CLoICL, = Q(P) -j@VDi, 

where 

and the lift coefficient can be written as 

c, = uoDi ejwt [Q(P) - j~D3/Dil* ( 4 4  

This lift coefficient can now be integrated over all frequencies to determine the 
unit step spoiler actuation solution. 

4.4. Unit step spoiler actuation 

The complete linearity of the blowing theory for K = 0 makes it possible to use 
the methods of superposition to obtain the transient spoiler actuation solution. 
The second term of (4.8) represents the contribution of the apparent mass term 
and will be discarded since it has no contribution to the solution. The remaining 
function Q(p), shown in figure 9 for a particular airfoil configuration, becomes 
asymptotic to the negative imaginary axis. This indicates that the real part of 
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the lift approaches zero asp approaches infinity. PhysicaIIy it can be argued that 
the ‘ blowing’ and ‘sucking ’ cycles occur so rapidly that the wake circulation 
cancels the lift more effectively. The boundary condition on the spoiler for the 
unit step actuation is 

w = (sins) l ( t ) ,  

where l ( t )  is the Heaviside integral. If w,, is put equal to (sinS)/2njjw and (4.8) is 
integrated over all frequencies, the lift coefficient becomes 

Suppose that u t  = SIC, 

where s’ is the distance moved in chords, then the lift coefficient can be written as 

where CLr is the final steady-state lift coefficient, 

(4.9) 

and the frequency parameter k is given by k = pc. The technique for solving this 
type of integral is given in detail by Bisplinghoff et al. (1955). Suppose that 

&(k) = W) +jfW)’ 

where R and S are real functions of k, then (4.9) becomes 

(4.10) 

R(k)  is only known numerically and therefore numerical techniques must be 
employed to solve this integral. R(k)  and the rate of change of R(k) approach zero 
for increasing k. This and the k factor in the denominator make the integrand of 
this integral rapidly approach zero. Truncating the integrand a t  a length corre- 
sponding to an even multiple of n allows this integral to be solved accurately 
for k no greater than about 25. 

4.5. Finite time spoiler actuation 

In  practical applications, spoiler actuation takes a finite period of time and it is 
desirable that this problem be included. The unit step integral (4.10) is entirely 
independent of the spoiler angle and this allows superposition of unit step 
solutions. Suppose the spoiler is erected to angle S by N equal finite steps of 116. 
During each step the airfoil travels As‘ and at  the completion of spoiler erection, 
the lift coefficient is 

CL = D,AS{~;[NAS’] + IJ(N - 1) AS’] + . . . + IN+I[O]}. 

If the airfoil travels a total distance s’ which is greater than the distance s: 
travelled during spoiler erection, the lift coefficient is 

C, = DlAS(Il[s‘] + IJs’ - s;/N] -I- . . . + &,+,[S’ - s:]}. 
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For large N ,  ASIS < 1 and AS can be repiaced by 6/ (N + 1). This gives the final 
steady-state lift coefficient as 

CI, = CLf W(s') ,  (4.11) 
1 

N+1  
W(s')  = - (I~[s'] + IJs' - s; /N] + . . . + .&+Js' - 413. where 

In  (4.1 l), C,, should be D,S and not D, sin S, however since it is the response 
function W(S' )  that is the important part of this solution, it is allowable for 
conformity purposes to write the solution with CLf as determined in the steady- 
state case. Typically, N = 20 shows good results. With N chosen, the lift coeff- 
cient is a function of the total distance travelled and the distance travelled 
during spoiler erection. 

5. Experiments 
Measurements of steady lift, drag and pitching moment were taken for a 14 yo 

thick Clark Y airfoil. It was constructed of wood and had a 14in. chord. Each 
end of the airfoil had &in. steel plates attached to allow spanwise spoilers of 
heighk 5 and 10 yo of the chord length to be mounted at different angles to the 
airfoil surface and at varying positions on the airfoil. Measurements were taken 
for spoiler positions 50% and 70 yo along the chord, and a t  angles of 30", 60" 
and 90". 

The airfoil was mounted a t  the mid-chord position on a six-component strain- 
gauge balance system. The lift, drag and pitching moment were measured over 
a wide range of incidence angles. The gap between the spoiler and the airfoil 
surface was sealed with masking tape for each configuration. The base pressure 
in the wake region was measured by taping a thin tube to the airfoil in the wake 
region. This tube was connected to an alcohol manometer, together with a tube 
leading to a static probe measuring the upstream undisturbed static pressure. 
The test Reynolds number was 4 x lo5. 

Similar measurements were taken on a 14% thick Clark Y airfoil with a 
32.5% flap. For these measurements the airfoil was mounted a t  the $-chord 
point. The gap on the lower surface between the main foil and the flap was sealed 
with masking tape. 

All measurements were made in the low-speed wind tunnel of the Mechanical 
Engineering Department of the University of British Columbia. This tunnel has 
a test section of 3ft by 2$€t over a length of Sgft. The tunnel produces a very 
uniform flow, with a turbulence level of less than 0.1 % over a wind speed range 

The wind-tunnel wall correction technique employed was the same as that 
employed by Jandali (1970). This method uses the corrections established by Pope 
&: Harper (1966, §6.7), with a dimensionless wake blockage velocity increment 
of $(c /H)  CD instead of &(c /H)  CD, where H is the tunnel wall spacing and C, is 
the airfoil drag coefficient. Jandali found that measurements on airfoils of 
varying chord lengths collapsed better using these corrections. There exists some 
controversy over the techniques employed for correcting the wake pressure 
coefficient. Bluff-body and stalled-airfoil techniques such as those presented by 

Of O-l5Oft/s. 
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Maskell (1963) are not strictly applicable in this case. To overcome this problem, 
base pressure measurements were taken over a range of incidence angles on airfoils 
of chords 9, 14, 19 and 24in. long for normal spoilers of 5 and 10% height, 
located at  both the 50 and 70% chord positions. These measurements were 
plotted and interpolated back to zero-chord conditions (or infinite stream). The 
base pressure coefficients for the remaining spoiler angles, for which measurements 
were taken on the 14 in. chord airfoil, were then corrected in the same respective 
ratio. It is realized that, as the spoiler angle changes, the wake characteristics also 
change slightly. This in turn would affect the correction ratios slightly. This 
technique does, however, give reasonably realistic results and was used in the 
absence of better information. 

At low airfoil incidence and small spoiler angle the possibility of flow reattach- 
ment occurs. In  such a case the theory is not applicable. To ensure that measure- 
ments were not taken for such cases tufts of cotton were attached to the airfoil 
surface in the wake region. Observation of these tufts in all airfoil configurations 
was carefully carried out. The lower surface of the Clark Y airfoil is flat, and this 
base is used as a reference for incidence rather than the usual chord line. 

The model used for transient loading measurements was also a 14% thick 
Clark Y airfoil of 14 in. chord. However, it  was made of steel and had a mid-span 
section instrumented with 24 pressure taps, each of which could be connected in 
sequence to a cavity containing a condenser microphone. A spoiler of 8.5% 
chord height mounted at the 70 yo chord position could be actuated a t  different 
constant rates to any angle up to 90" by a Slo-Syn motor. 

For a given combination of wind speed, airfoil incidence, spoiler angle and 
actuation rate, the spoiler was actuated repeatedly with each pressure tap con- 
nected in turn to the microphone cavity. Each transient tap pressure was deter- 
mined from a photograph of the microphone output on the screen of a storage 
oscilloscope, such as that of figure 3 (plate l), taken for a tap near the nose of the 
airfoil. The instantaneous pressure distribution of the airfoil at  any time after 
the start of spoiler actuation was determined from the ordinate of the trace on 
each photograph at that time, and the area of the pressure distribution was 
measured to determine the instantaneous lift. 

6. Results and comparisons 
In  this section, the lift predicted by the theory for both the steady state and 

the transient state following spoiler actuation is compared with experimental 
results and, where possible, with the predictions of the theory of Woods (1953) as 
modified by Barnes (1965). Corrected experimental base pressure coefficients - K 
used in the calculations ranged from - 0-3 to - 0.65, and corresponding calcu- 
lated values of I ranged from 3.0 to 1.2. 

6.1. Steady-state lift 

In  figure 4(a), the lift coefficient C, is plotted as a function of the incidence 
angle a for a Clark Y airfoil of 14 % thickness with a normal 10 % spoiler a t  the 
50 % chord position. The present theory is seen to give quite good agreement, 
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FIGURE 4. Lift ws. incidence angle for 14% Clark Y airfoil with 10% normal spoiler at 
(a)  the 50% and (b)  the 70% chord position. -, present theory; --- , Woods’s 
(1953) theory; 0, experiments. 

with the experimental results, particularly for positive C,. Woods’s theory gives 
better agreement for negative C,, but worse agreement for positive C,, and pre- 
dicts too low a value of dCL/da. I n  figure 4 ( b ) ,  the configuration is the same 
except that the normal spoiler is a t  the 70 yo chord position. Here the present 
theory gives excellent agreement with the experimental values. (The concave 
upward trend of the data a t  high C, results from the growing bubble separation 
in front of the spoiler, not accounted for in the theory.) Woods’s theory also 
gives quite good agreement, but again predicts too low a value of dCL/da. 

In  figure 5 (a) ,  the configuration is as in figure 4 ( b ) ,  except that the normal 
spoiler is 5 yo of the chord length in height. Both theories give good agreement 
with the experimental results, particularly Woods’s theory, although the present 
theory gives a better value of dC,/da. I n  figure 5 ( b ) ,  values are shown for the same 
airfoil with a 10 yo spoiler inclined a t  60” to the surface a t  the 70 yo chord position. 
The present theory is again seen to give good agreement with the experimental 
points. Woods’s theory was not calculated for this case, since Barnes’s empirical 
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FIGURE 5. Lift us. incidence angle for 14 yo Clark Y airfoil with (a) 5 yo normal spoiler and 
( 6 )  10% spoiler inclined at 60" at the 70% chord position. -, present theory; ---, 
Woods's (1953) theory ; 0, experiments. 

formula for the incremental pressure coefficient behind the spoiler, needed in the 
calculation, applies only to normal spoilers. 

Figure 6 is a cross-plot at a = 6" for the same airfoil with a 10 yo spoiler at the 
70 yo chord position, showing the dependence of C, on spoiler angle 8. The present 
theory predicts the trend of the experimental values correctly, and gives respect- 
able quantitative agreement. There are few published results of experiments on 
airfoil spoilers, so when some unpublished results of two-dimensional spoiler tests 
on one of their airfoils were made available to the authors by de Havilland, 
Canada, it seemed useful to make a comparison with the predictions of the 
present theory. This is shown in figure 7. The theory could not be calculated for 
the actual airfoil, since its co-ordinates were not available, so the theory was 
calculated for the 14 yo thick Clark Y airfoil, and the comparison was made for 
the same spoiler geometry (8.2 yo spoiler a t  the 69 yo chord position) and a t  the 
same incidence measured from zero lift incidence for the basic airfoil (12.5"), to 
equalize the effects of camber. The theoretical curve is seen to agree quite closely 
with the experimental points. The agreement would have been closer still if the 
theory had been calculated for an airfoil of the thickness of the test airfoil (18 %)- 
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FIGURE 6. ift vus. spoiler inclination for 14% Clark Y airfoil a t  6" incic-nee with 
10 yo spoiler at  the 70 yo chord position. -, present theory; 0, experiments. 
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FIGURE 7. Lift .us. spoiler inclination for airfoil a t  12.5" incidence (from zero lift) with 8.2 yo 
spoiler a t  the 69 yo chord position. --, present theory, for 14 yo Clark Y airfoil ; 0, experi- 
ments (unpublished results for 18 yo de Havilland Canada, airfoil). 

The final steady-state comparison, shown in figure 8, is for the 14% Clark 
Y airfoil with a 10 yo normal spoiler a t  the 70 yo chord position, and with a simple 
flap 32.5 % of the chord length deflected by 15'. Woods's theory with Barnes's 
empirical modification can be calculated for this case, since the spoiler is normal, 
and the two theories are seen to give good agreement with the experimental 
points, the present theory being slightly the better. 
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FIGURE 8. Lift ws. incidence angle for 14 yo Clark Y airfoil with 10 yo normal spoiler at the 
70% chord position, and simple flap at  the 32.5% chord position deflected by 15’. 
-, present theory; --- , Woods’s (1953) theory; 0, experiments. 

6.2. Transient lift 

As shown in 3 4.4, the transient lift is obtained by an integral transform of the 
function &(p), which represents, except for the omission of the apparent-mass 
term, the ratio of instantaneous to quasi-steady lift in the ‘blowing’ theory. 
Figure 9 shows &(p) for the case corresponding to a 10% spoiler at  the 70% 
chord position. The lift approaches the quasi-steady value, as expected, as the 
frequency parameter p approaches zero, and the real part of the lift approaches 
zero for large p. This may be argued in terms of the ‘blowing’ and ‘sucking ’ 
cycles occurring so rapidly at  large ,u that the net effect approaches zero. 

For the unit step and finite rate spoiler actuation problems, the results are 
reported as the ratio W(s’) of the instantaneous lift to the final steady-state lift 
as a function of airfoil travel s‘ in chords. Since this form of presentation elimi- 
nates the dependence on spoiler angle, the solution becomes a function of spoiler 
position and height only. Also, the lift given by W(s’) is that due to the spoiler 
actuation only, so if the complete instantaneous lift is wanted, the previous 
steady-state solutions for incidence, camber, thickness and flap must be added 
as required. 

Figure 10 shows W(s’) calculated for a 10 yo spoiler at  the 70 yo chord position 
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FIGURE 9. Lift function in 'blowing' theory, corresponding to 
10 % spoiler at the 70 % chord position. 

FIGURE 10. Transient lift decrement function for 10 yo spoiler at the 70 Yo chord position. 
-, present theory; 0, A, experiments on 14 yo Clark Y airfoil. 

for various values of the erection time in terms of airfoil travel, including the 
unit step. Two sets of measured values are also included. These represent erection 
of the spoiler to 45" and 90" at the same constant rate, giving airfoil travel during 
erection of 4-25 and 8.5 chords, respectively. The incidence angle was 12". It 
would have been desirable to  carry out more measurements, for different values 
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Spoiler erection distance 
/ (chords) 

5 10 15 5 10 15 
Spoiler erection distance (chords) 

present theory. -, 10% spoiler; ---, 5 %  spoiler. 
11. Effect of (a) spoiler position and ( b )  spoiler erection rate on transient lift by 
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of a, 6 and erection rate, but unfortunately the wind tunnel had to be dismantled 
after these two tests, for transfer to a new laboratory building, and further tests 
have been delayed. The meaning of W(s‘) for the experimental values is slightly 
different. It is the ratio of the instantaneous decrement of lift due to spoiler 
actuation to the corresponding steady-state decrement from the basic airfoil lift. 
(In the theory, the sum of the lifts from the incidence, camber and thickness 
cases is not the basic airfoil lift, since the effect of the cavity is included in them.) 

When these differences, and the fact that the high incidence case tested is not 
the most favourable for comparison with the theory, and the use of free-stream 
cavity pressure in the theory, are considered, the degree of agreement between 
theory and experiment in figure 10 can be considered a t  least promising, since 
the experimental points fall in about the right places between the theoretical 
curves, although the experimental increase of W(s’) is more abrupt. 

Figures 11 (a)  and (b)  are summary plots of the effects predicted by the theory 
of different parameters on the time for the transient lift to reach 90 yo of the 
steady-state value. In  figure 11 (a) ,  the effect of spoiler position is shown for 
5 and 10 yo spoilers in unit step and finite rate erection, and it is seen that the 
spoiler height has little effect (justifying the comparison of experimental data 
for an 8.5 yo spoiler with theoretical results for a 10 yo spoiler in figure lo), but 
that the time to reach 90 yo of steady-state lift increases as the spoiler is moved 
towards the airfoil trailing edge. In  figure 11 (b ) ,  the effect of the spoiler erection 
rate is shown for 5 and 10 yo spoilers at  the 50 and 70  yo chord positions, and the 
common gradual trend towards the quasi-steady solution is evident. 

7. Discussion 
The present theory appears to give quite accurate predictions of the steady- 

state lift of airfoils with spoilers. The previous theory of Woods (1953), using 
Barnes’s (1965) empirical formula for the incremental base pressure coefficient, 
also gives quite good predictions, but generally with too low a value of dCL/da. 
This would be improved if another empirical recommendation of Barnes was 
incorporated in Woods’s theory, the use of a reduced effective spoiler height as 
a function of the airfoil boundary-layer displacement thickness. This was not 
done here, to give a fair comparison of the two theories, since no effect of the 
boundary layer is incorporated in the present theory. 

Woods’s theory for C, is simpler to use, requiring only slide-rule computations, 
whereas the present theory, with its series for the camber and thickness effects, 
requires a computer program for computation of CL. However, Woods’s theory 
requires empirical specifications of both the complete spoiler base pressure 
coefficient (to give the separation velocity from the spoiler tip) and the incre- 
mental base pressure coefficient caused by the spoiler. The latter is awkward to 
determine, and no formula for it is available for inclined spoilers, Barnes’s 
formula applying only to normal spoilers. The present theory requires empirical 
specification of the spoiler base pressure coefficient only. 

The theory can easily be extended to the calculation of the pitching moment, 
but so far this has not been done. Although the present steady-state theory 
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appears to provide some improvement over Woods’s theory, the main reason for 
working it out was to provide a stepping stone to the transient theory. The 
agreement of this theory for transient lift following spoiler actuation with 
preliminary wind-tunnel measurements is encouraging, and it seems probable 
that the use of the free-stream cavity pressure in the calculation of the function 
W(s’) does not lead to serious error. It is hoped that the theory will be of use in 
the preliminary design of airfoils or hydrofoils with retractable spoilers. 

The spoiler airfoil for transient measurements was designed by A. K. Dixit and 
the preliminary wind-tunnel tests of figure 10 were carried out by undergraduate 
students G. Wohlfarth and D. Bruce. Financial support was provided by the 
Defence Research Board of Canada under Grant 9551-13. 
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FXGURE 3. Upper trace : transient upper surface pressure near airfoil leading edgc. 
Lower trace : trigger signal for start' arid finish of spoiler actuation. 
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